Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. Lipid remodeling, the modification of cell membrane chemistry via structural rearrangements within the lipid pool of an organism, is a common physiological response amongst all domains of life to alleviate environmental stress and maintain cellular homeostasis. Whereas culture experiments and environmental studies of phytoplankton have demonstrated the plasticity of lipids in response to specific abiotic stressors, few analyses have explored the impacts of multi-environmental stressors at the community-level scale. Here, we study changes in the pool of intact polar lipids (IPLs) of a phytoplanktonic community exposed to multi-environmental stressors during a ∼ 2-month-long mesocosm experiment deployed in the eastern tropical South Pacific off the coast of Callao, Peru. We investigate lipid remodeling of IPLs in response to changing nutrient stoichiometries, temperature, pH, and light availability in surface and subsurface water masses with contrasting redox potentials, using multiple linear regressions, classification and regression trees, and random forest analyses. We observe proportional increases in certain glycolipids (namely mono- and diglycosyldiacylglycerol – MGDG and DGDG, respectively) associated with higher temperatures and oxic conditions, consistent with previous observations of their utility to compensate for thermal stress and their degradation under oxygen stress. N-bearing (i.e., betaine lipids and phosphatidylethanolamine – BLs and PE) and non-N-bearing (i.e., MGDG; phosphatidylglycerol, PG; and sulfoquinovosyldiacylglycerol, SQDG) IPLs are anti-correlated and have strong positive correlations with nitrogen-replete and nitrogen-depleted conditions, respectively, which suggests a substitution mechanism for N-bearing IPLs under nitrogen limitation. Reduced CO2(aq) availability and increased pH levels are associated with greater proportions of DGDG and SQDG IPLs, possibly in response to the lower concentration of CO2(aq) and the overall lower availability of inorganic carbon for fixation. A higher production of MGDG in surface waters corresponds well with its established photoprotective and antioxidant mechanisms in thylakoid membranes. The observed statistical relationships between IPL distributions, physicochemical parameters, and the composition of the phytoplankton community suggest evidence of lipid remodeling in response to environmental stressors. These physiological responses may allow phytoplankton to reallocate resources from structural or extrachloroplastic membrane lipids (i.e., phospholipids and betaine lipids) under high-growth conditions to thylakoid and/or plastid membrane lipids (i.e., glycolipids and certain phosphatidylglycerols) under growth-limiting conditions. Further investigation of the exact mechanisms controlling the observed trends in lipid distributions is necessary to better understand how membrane reorganization under multi-environmental stressors can affect the pools of cellular C, N, P, and S, as well as their fluxes to higher trophic levels in marine environments subjected to increasing environmental pressure. Our results suggest that future studies addressing the biogeochemical consequences of climate change in the eastern tropical South Pacific Ocean must take into consideration the impacts of lipid remodeling in phytoplankton.more » « less
- 
            The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites). However, the geochemical conditions that arise from water-rock reaction also challenge the known limits of microbial physiology, such as hyperalkaline pH, limited electron acceptors and inorganic carbon. Because cell membranes act as a primary barrier between a cell and its environment, lipids are a vital component in microbial acclimation to challenging physicochemical conditions. To probe the diversity of cell membrane lipids produced in serpentinizing settings and identify membrane adaptations to this environment, we conducted the first comprehensive intact polar lipid (IPL) biomarker survey of microbial communities inhabiting the subsurface at a terrestrial site of serpentinization. We used an expansive, custom environmental lipid database that expands the application of targeted and untargeted lipodomics in the study of microbial and biogeochemical processes. IPLs extracted from serpentinite-hosted fluid communities were comprised of >90% isoprenoidal and non-isoprenoidal diether glycolipids likely produced by archaeal methanogens and sulfate-reducing bacteria. Phospholipids only constituted ~1% of the intact polar lipidome. In addition to abundant diether glycolipids, betaine and trimethylated-ornithine aminolipids and glycosphingolipids were also detected, indicating pervasive membrane modifications in response to phosphate limitation. The carbon oxidation state of IPL backbones was positively correlated with the reduction potential of fluids, which may signify an energy conservation strategy for lipid synthesis. Together, these data suggest microorganisms inhabiting serpentinites possess a unique combination of membrane adaptations that allow for their survival in polyextreme environments. The persistence of IPLs in fluids beyond the presence of their source organisms, as indicated by 16S rRNA genes and transcripts, is promising for the detection of extinct life in serpentinizing settings through lipid biomarker signatures. These data contribute new insights into the complexity of lipid structures generated in actively serpentinizing environments and provide valuable context to aid in the reconstruction of past microbial activity from fossil lipid records of terrestrial serpentinites and the search for biosignatures elsewhere in our solar system.more » « less
- 
            Abstract. Elevated organic matter (OM) concentrations are found in hadalsurface sediments relative to the surrounding abyssal seabed. However, theorigin of this biological material remains elusive. Here, we report on thecomposition and distribution of cellular membrane intact polar lipids (IPLs)extracted from surface sediments around the deepest points of the AtacamaTrench and adjacent bathyal margin to assess and constrain the sources oflabile OM in the hadal seabed. Multiscale bootstrap resampling of IPLs'structural diversity and abundance indicates distinct lipid signatures inthe sediments of the Atacama Trench that are more closely related to thosefound in bathyal sediments than to those previously reported for the upperocean water column in the region. Whereas the overall number of unique IPLstructures in hadal sediments contributes a small fraction of the total IPLpool, we also report a high contribution of phospholipids with mono- anddi-unsaturated fatty acids that are not associated with photoautotrophicsources and that resemble traits of physiological adaptation to highpressure and low temperature. Our results indicate that IPLs in hadalsediments of the Atacama Trench predominantly derive from in situ microbialproduction and biomass, whereas the export of the most labile lipidcomponent of the OM pool from the euphotic zone and the overlying oxygenminimum zone is neglectable. While other OM sources such as the downslopeand/or lateral transport of labile OM cannot be ruled out and remain to bestudied, they are likely less important in view of the lability ofester-bond IPLs. Our results contribute to the understanding of themechanisms that control the delivery of labile OM to this extreme deep-seaecosystem. Furthermore, they provide insights into some potentialphysiological adaptation of the in situ microbial community to high pressure andlow temperature through lipid remodeling.more » « less
- 
            Abstract We evaluate the efficacy of the stable isotope composition of precipitation and plant waxes as proxies for paleoaltimetry and paleohydrology in the northern tropical Andes. We report monthly hydrogen (δ2Hp) and oxygen (δ18Op) isotope values of precipitation for an annual cycle, and hydrogen isotope values of plant waxes (δ2Hwax) obtained from modern soils along the eastern and western flanks of the Eastern Cordillera of Colombia. δ2Hp, δ18Op, as well as the unweighted mean δ2Hwaxvalues ofn‐C29,n‐C31, andn‐C33n‐alkanes in the eastern flank show a dependence on elevation (R2 = 0.90, 0.82, and 0.65, respectively). In stark contrast, the stable isotope compositions of neither precipitation nor plant waxes from the western flank correlate with elevation (R2 < 0.23), on top of a negligible (p‐value >0.05) correlation between δ2Hwaxand δ2Hp. In general, δ2Hwaxvalues along the eastern flank of the Eastern Cordillera seem to follow the trend of a simple Rayleigh distillation process that is consistent with studies elsewhere on the eastern side of the Andes in South America. Neither δ2Hpnor δ18Op, and therefore δ2Hwax, offer reliable estimates of past elevations in the western flank, due perhaps to water vapor source mixing, evaporation overprint, contrasting plant communities, and/or differences in evapotranspiration. Thus, δ2Hwaxis only reliable for paleohydrology and paleoaltimetry reconstructions on the eastern flank of the Andes, whereas interpretations based on δ2Hpand/or δ18Opwest of the highest point of the Eastern Cordillera need to consider mixing of moisture sources in addition to precipitation amount.more » « less
- 
            Abstract Paleotemperature histories derived from lake sediment archives provide valuable context for modern and future climate changes. Branched glycerol dialkyl glycerol tetraether (brGDGT) lipids are a valuable tool in such pursuits due to their empirical correlation with temperature and near ubiquity in nature. However, the relative contributions of terrestrial and lacustrine sources of brGDGTs to lake sediments is site‐dependent and difficult to constrain. Here, we explored the potential for intact brGDGTs—the complete lipids with polar head groups (HGs) still attached—to provide insight into the sources of brGDGTs on the landscape and their contributions to the sedimentary record in a set of Arctic lakes. We measured core and intact brGDGTs in soils, surface and downcore sediments, water filtrates, and sediment traps across five lake catchments in the Eastern Canadian Arctic, with an emphasis on Lake Qaupat (QPT), Baffin Island. Soils were dominated by brGDGTs with a monoglycosyl (1G) HG, while lacustrine samples contained more phosphohexose (PH) brGDGTs, providing evidence for in situ brGDGT production in both settings. Core‐ and PH‐brGDGT‐IIIa were more abundant in sediments than in the soils or water column, implying an additional post‐depositional source of brGDGTs. A hierarchical clustering analysis indicated that core brGDGTs in Lake QPT sediments were largely lacustrine in origin, while 1G‐brGDGTs were primarily soil‐derived. Additionally, we found evidence for preservation of intact brGDGTs—especially 1G‐brGDGTs—downcore on thousand‐year timespans, though in situ production deeper in the sediment column cannot be ruled out. Finally, we explored the possibility of reconstructing 1G‐brGDGT‐derived soil temperatures and core‐brGDGT‐derived lake temperatures in tandem from sedimentary archives.more » « less
- 
            Abstract Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial cell membrane lipids that, when preserved in sedimentary archives, can be used to infer continental paleotemperatures. Although commonly used global calibrations capture a relationship between the distribution of brGDGTs and temperature, they underestimate temperatures for tropical regions as much as ~16°C. Furthermore, some global calibrations reach saturation at around 24–25°C, and, in general, they have root‐mean‐squared errors (RMSEs ≈ ~4°C) that are too large for them to resolve small variations in paleoclimate variability in tropical regions. We present an in situ regional calibration of soil brGDGTs along altitudinal transects on both flanks of the Eastern Cordillera of Colombia in the northern tropical Andes that spans ~3,200 m in elevation and 17°C and 19°C in mean annual soil and air temperatures, respectively. These new soil and air regional calibrations yield RMSEs of 1.5°C and 1.9°C, respectively. When combined with existing data from elsewhere in the tropics, the integrated data (n = 175) not only fit a linear calibration with a RMSE of 2.7°C but also fit a nonlinear calibration with a RMSE of 2.2°C. These calibrations allow for a more precise and reliable reconstruction of past temperatures in the tropics than global calibrations.more » « less
- 
            Abstract Arctic shrubification is an observable consequence of climate change, already resulting in ecological shifts and global‐scale climate feedbacks including changes in land surface albedo and enhanced evapotranspiration. However, the rate at which shrubs can colonize previously glaciated terrain in a warming world is largely unknown. Reconstructions of past vegetation dynamics in conjunction with climate records can provide critical insights into shrubification rates and controls on plant migration, but paleoenvironmental reconstructions based on pollen may be biased by the influx of exotic pollen to tundra settings. Here, we reconstruct past plant communities using sedimentary ancient DNA (sedaDNA), which has a more local source area than pollen. We additionally reconstruct past temperature variability using bacterial cell membrane lipids (branched glycerol dialkyl glycerol tetraethers) and an aquatic productivity indicator (biogenic silica) to evaluate the relative timing of postglacial ecological and climate changes at a lake on southern Baffin Island, Arctic Canada. ThesedaDNA record tightly constrains the colonization of dwarf birch (Betula, a thermophilous shrub) to 5.9 ± 0.1 ka, ~3 ka after local deglaciation as determined by cosmogenic10Be moraine dating and >2 ka later thanBetulapollen is recorded in nearby lake sediment. We then assess the paleovegetation history within the context of summer temperature and find that paleotemperatures were highest prior to 6.3 ka, followed by cooling in the centuries precedingBetulaestablishment. Together, these molecular proxies reveal thatBetulacolonization lagged peak summer temperatures, suggesting that inefficient dispersal, rather than climate, may have limited Arctic shrub migration in this region. In addition, these data suggest that pollen‐based climate reconstructions from high latitudes, which rely heavily on the presence and abundance of pollen from thermophilous taxa likeBetula, can be compromised by both exotic pollen fluxes and vegetation migration lags.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
